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while we implemented ourselves the dissimilarity measures and the gap statistic.

2.2.1 Dissimilarity Measures

One of the difficulties in non-ranked psychological data is determining an appropri-
ate metric for similarity, or in our case, dissimilarity. There are a number of different
metrics in existence, two of which we used in our study. However, the best metrics
use some domain-specific knowledge to capture nuances of the problem space that
more greedy measures ignore. Two of the metrics described below were created to in-
corporate reasonable information about our problem space. As we see in the results,
Section 3, the performance of the non-standard metrics is somewhat sub-optimal,
suggesting the need for further exploration of more appropriate measures.

As a first measure of dissimilarity we can look at differences in selections of words.
That is, if a subject gave a rating to a word, we assign it a value of 1; if the word was
not selected, we assign a value of 0. We can then compute the Hamming distance
between observation2 i and j as

dij =
∑

p

|1− δ(xi, xj)| (1)

The Hamming distance gives us a measure that rewards exact similarity between
observations, but penalizes any differences. Given the nature of individual differences
in human subjects, this measure will likely be too strict. As well, it ignores (by
construction) the ratings that subjects gave to the stimuli.

Since subjects not only selected descriptors but assigned implicit weights (via their
ratings) to their selections, we should consider dissimilarity measures that incorpo-
rate these values. In all of the cases that follow, when we compute numeric differences
between observations, we assign 0 to the absence of a feature; that is, if a subject did
not select a particular word, we set the rating to 0. Later on, we discuss possible
issues with this formulation; see Section 4.1

As an alternative to the Euclidean measure, we can consider the Manhattan or L1

distance

dij =
∑

p

|xi − xj | . (2)

This measure takes into account the subject’s ratings for particular words and
ensures that subjective differences in emotional experience are considered.

One issue with the Manhattan distance is that non-selected features are treated
the same as selected features. Yet choosing an emotional descriptor is a quite differ-
ent act than not choosing one, and our dissimilarity measure should take this into
account. The common distance combines the Hamming and Manhattan distances
together. Consider the set {Pcommon} ⊆ {P}, where {Pcommon} is the set of features
common to observation i and j. The common distance is then

dij =
∑

p∈Pcommon

|xi − xj | . (3)

Equation 3 captures the differences between observations in a more nuanced way
than the Hamming distance, yet does not treat non-selected descriptors in the same
way as selected ones.

Yet the common distance is not entirely satisfactory, as subjects may choose differ-
ent, yet related words to describe their emotional experience. A dissimilarity measure,

2In this case, and with all dissimilarity measures that follow, we suppress the dimensionality p of the
observation vector x. Subscripts thus range over observations, where, depending on the analysis, the
observation may be words, subjects, or pieces.
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while we implemented ourselves the dissimilarity measures and the gap statistic.

2.2.1 Dissimilarity Measures

One of the difficulties in non-ranked psychological data is determining an appropri-
ate metric for similarity, or in our case, dissimilarity. There are a number of different
metrics in existence, two of which we used in our study. However, the best metrics
use some domain-specific knowledge to capture nuances of the problem space that
more greedy measures ignore. Two of the metrics described below were created to in-
corporate reasonable information about our problem space. As we see in the results,
Section 3, the performance of the non-standard metrics is somewhat sub-optimal,
suggesting the need for further exploration of more appropriate measures.

As a first measure of dissimilarity we can look at differences in selections of words.
That is, if a subject gave a rating to a word, we assign it a value of 1; if the word was
not selected, we assign a value of 0. We can then compute the Hamming distance
between observation2 i and j as

dij =
∑

p

|1− δ(xi, xj)| (1)

The Hamming distance gives us a measure that rewards exact similarity between
observations, but penalizes any differences. Given the nature of individual differences
in human subjects, this measure will likely be too strict. As well, it ignores (by
construction) the ratings that subjects gave to the stimuli.

Since subjects not only selected descriptors but assigned implicit weights (via their
ratings) to their selections, we should consider dissimilarity measures that incorpo-
rate these values. In all of the cases that follow, when we compute numeric differences
between observations, we assign 0 to the absence of a feature; that is, if a subject did
not select a particular word, we set the rating to 0. Later on, we discuss possible
issues with this formulation; see Section 4.1

As an alternative to the Euclidean measure, we can consider the Manhattan or L1

distance

dij =
∑

p

|xi − xj | . (2)

This measure takes into account the subject’s ratings for particular words and
ensures that subjective differences in emotional experience are considered.

One issue with the Manhattan distance is that non-selected features are treated
the same as selected features. Yet choosing an emotional descriptor is a quite differ-
ent act than not choosing one, and our dissimilarity measure should take this into
account. The common distance combines the Hamming and Manhattan distances
together. Consider the set {Pcommon} ⊆ {P}, where {Pcommon} is the set of features
common to observation i and j. The common distance is then

dij =
∑

p∈Pcommon

|xi − xj | . (3)

Equation 3 captures the differences between observations in a more nuanced way
than the Hamming distance, yet does not treat non-selected descriptors in the same
way as selected ones.

Yet the common distance is not entirely satisfactory, as subjects may choose differ-
ent, yet related words to describe their emotional experience. A dissimilarity measure,

2In this case, and with all dissimilarity measures that follow, we suppress the dimensionality p of the
observation vector x. Subscripts thus range over observations, where, depending on the analysis, the
observation may be words, subjects, or pieces.
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while we implemented ourselves the dissimilarity measures and the gap statistic.

2.2.1 Dissimilarity Measures

One of the difficulties in non-ranked psychological data is determining an appropri-
ate metric for similarity, or in our case, dissimilarity. There are a number of different
metrics in existence, two of which we used in our study. However, the best metrics
use some domain-specific knowledge to capture nuances of the problem space that
more greedy measures ignore. Two of the metrics described below were created to in-
corporate reasonable information about our problem space. As we see in the results,
Section 3, the performance of the non-standard metrics is somewhat sub-optimal,
suggesting the need for further exploration of more appropriate measures.

As a first measure of dissimilarity we can look at differences in selections of words.
That is, if a subject gave a rating to a word, we assign it a value of 1; if the word was
not selected, we assign a value of 0. We can then compute the Hamming distance
between observation2 i and j as

dij =
∑

p

|1− δ(xi, xj)| (1)

The Hamming distance gives us a measure that rewards exact similarity between
observations, but penalizes any differences. Given the nature of individual differences
in human subjects, this measure will likely be too strict. As well, it ignores (by
construction) the ratings that subjects gave to the stimuli.

Since subjects not only selected descriptors but assigned implicit weights (via their
ratings) to their selections, we should consider dissimilarity measures that incorpo-
rate these values. In all of the cases that follow, when we compute numeric differences
between observations, we assign 0 to the absence of a feature; that is, if a subject did
not select a particular word, we set the rating to 0. Later on, we discuss possible
issues with this formulation; see Section 4.1

As an alternative to the Euclidean measure, we can consider the Manhattan or L1

distance

dij =
∑

p

|xi − xj | . (2)

This measure takes into account the subject’s ratings for particular words and
ensures that subjective differences in emotional experience are considered.

One issue with the Manhattan distance is that non-selected features are treated
the same as selected features. Yet choosing an emotional descriptor is a quite differ-
ent act than not choosing one, and our dissimilarity measure should take this into
account. The common distance combines the Hamming and Manhattan distances
together. Consider the set {Pcommon} ⊆ {P}, where {Pcommon} is the set of features
common to observation i and j. The common distance is then

dij =
∑

p∈Pcommon

|xi − xj | . (3)

Equation 3 captures the differences between observations in a more nuanced way
than the Hamming distance, yet does not treat non-selected descriptors in the same
way as selected ones.

Yet the common distance is not entirely satisfactory, as subjects may choose differ-
ent, yet related words to describe their emotional experience. A dissimilarity measure,

2In this case, and with all dissimilarity measures that follow, we suppress the dimensionality p of the
observation vector x. Subscripts thus range over observations, where, depending on the analysis, the
observation may be words, subjects, or pieces.

Common

7

in order to capture this fact, might weight non-common descriptors differently than
common descriptors. We define the weighted Manhattan distance as a weighted sum
of Manhattan distances of both common and non-common features.

Let {Pselected} be the set of selected features, {Pcommon} the set of common fea-
tures, {Pnon−common} the set of non-common features, with {Pselected} = {Pcommon} ∪
{Pnon−common}. The weighted Manhattan distance is then

dij =
∑

p∈{Pcommon}

|xi − xj | +
1

|{Pnon−common}|
∑

p∈{Pnon−common}

|xi − xj | (4)

with |{Pnon−common}| being the size3 of {Pnon−common}.

2.2.2 Multidimensional Scaling

To reduce the dimensionality of the data, we apply standard metric multidimensional
scaling (Gower, 1966) or MDS. Consider our set of data as x1, x2, . . . , xN ∈ Rp. We de-
fine dij as the dissimilarity between item i and item j. The items may be words, pieces,
or subjects. Many times MDS uses Euclidean distance, whereby dij = ||xi − xj ||; how-
ever, as explicated above, such a distance metric may not be appropriate for selection
of emotional descriptors and/or ratings made by the subject.

One advantage of MDS over other dimensionality reduction techniques is that it
can use simply the dissimilarity matrix dij, a useful fact when you may not have
access to the actual data xi. In our case we do, however working with the matrix is
easier.

Given dij, classical MDS works to choose vectors z1, z2, . . . , zN ∈ Rk with k < p
(oftentimes k = 2) by minimizing the stress function

S(z1, z2, . . . , zN ) =




∑

i #=i′

(dij − ||zi − z′i||)2



1/2

. (5)

There are many algorithms for minimizing Equation 5; the default used in the R
function cmdscale, and the one chosen for this study, is due to Cailliez (1983).

We considered other MDS methods, such as non-metric or Shephard-Kruskal scal-
ing. However, while non-metric methods might appear on the surface to be appropri-
ate, we do not have ordinal rankings of emotion words; instead, we have directions
in subspaces of our emotion word space. It is likely that the emotional space is non-
Euclidean, thus our exploration of other distance metrics as described earlier.

2.2.3 Clustering of MDS Results

MDS is oftentimes used primarily as a visualization tool, reducing the number of
dimensions of a problem space to two or three for better understanding. We can
continue with the analysis, however, by looking at how items cluster in this lower-
dimensional space defined by the MDS axes. Such clustering is the ultimate goal of
this experiment, where we want to know if our results cluster by prior experience or
not.

There are many types of clustering algorithms, but the most straightforward for
our purposes is K-means. Briefly, K-means aims to choose a set of cluster centers
{m1, . . . ,mK} (with each m ∈ Rp, p being the dimension of our observation space) such
that for each assignment of an observation xi to a cluster (via C(i)), the following
criterion holds:

3In the case of |{Pnon−common}| = 0, we change the non-common weight to 0.

Weighted Manhattan
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tion of multidimensional scaling (using a variety of dissimilarity metrics) along with
K-means clustering of dimensionality-reduced data.

We performed all analyses plotting using R (R Development Core Team, 2005).
Multidimensional scaling and K-means clustering used existing implementations,
while we implemented ourselves the dissimilarity measures and the gap statistic.

2.2.1 Dissimilarity Measures

One of the difficulties in non-ranked psychological data is determining an appropri-
ate metric for similarity, or in our case, dissimilarity. There are a number of different
metrics in existence, two of which we used in our study. However, the best metrics
use some domain-specific knowledge to capture nuances of the problem space that
more greedy measures ignore. Two of the metrics described below were created to in-
corporate reasonable information about our problem space. As we see in the results,
Section 3, the performance of the non-standard metrics is somewhat sub-optimal,
suggesting the need for further exploration of more appropriate measures.

As a first measure of dissimilarity we can look at differences in selections of words.
That is, if a subject gave a rating to a word, we assign it a value of 1; if the word was
not selected, we assign a value of 0. We can then compute the Hamming distance
between observation2 i and j as

dij =
∑

p

|1− δ(xi, xj)| (1)

The Hamming distance gives us a measure that rewards exact similarity between
observations, but penalizes any differences. Given the nature of individual differences
in human subjects, this measure will likely be too strict. As well, it ignores (by
construction) the ratings that subjects gave to the stimuli.

Since subjects not only selected descriptors but assigned implicit weights (via their
ratings) to their selections, we should consider dissimilarity measures that incorpo-
rate these values. In all of the cases that follow, when we compute numeric differences
between observations, we assign 0 to the absence of a feature; that is, if a subject did
not select a particular word, we set the rating to 0. Later on, we discuss possible
issues with this formulation; see Section 4.1

As an alternative to the Euclidean measure, we can consider the Manhattan or L1

distance

dij =
∑

p

|xi − xj | . (2)

dij =
√∑

p

|xi − xj |2 (3)

dij =
∑

p

(
xi log

xi

m
+ xj log

xj

m

)
,m =

xi + xj

2
(4)

dij =
∑

p

(xi −m)2

m
,m =

xi + xj

2
(5)

This measure takes into account the subject’s ratings for particular words and
ensures that subjective differences in emotional experience are considered.

2In this case, and with all dissimilarity measures that follow, we suppress the dimensionality p of the
observation vector x. Subscripts thus range over observations, where, depending on the analysis, the
observation may be words, subjects, or pieces.

Euclidean
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tion of multidimensional scaling (using a variety of dissimilarity metrics) along with
K-means clustering of dimensionality-reduced data.

We performed all analyses plotting using R (R Development Core Team, 2005).
Multidimensional scaling and K-means clustering used existing implementations,
while we implemented ourselves the dissimilarity measures and the gap statistic.

2.2.1 Dissimilarity Measures

One of the difficulties in non-ranked psychological data is determining an appropri-
ate metric for similarity, or in our case, dissimilarity. There are a number of different
metrics in existence, two of which we used in our study. However, the best metrics
use some domain-specific knowledge to capture nuances of the problem space that
more greedy measures ignore. Two of the metrics described below were created to in-
corporate reasonable information about our problem space. As we see in the results,
Section 3, the performance of the non-standard metrics is somewhat sub-optimal,
suggesting the need for further exploration of more appropriate measures.

As a first measure of dissimilarity we can look at differences in selections of words.
That is, if a subject gave a rating to a word, we assign it a value of 1; if the word was
not selected, we assign a value of 0. We can then compute the Hamming distance
between observation2 i and j as

dij =
∑

p

|1− δ(xi, xj)| (1)

The Hamming distance gives us a measure that rewards exact similarity between
observations, but penalizes any differences. Given the nature of individual differences
in human subjects, this measure will likely be too strict. As well, it ignores (by
construction) the ratings that subjects gave to the stimuli.

Since subjects not only selected descriptors but assigned implicit weights (via their
ratings) to their selections, we should consider dissimilarity measures that incorpo-
rate these values. In all of the cases that follow, when we compute numeric differences
between observations, we assign 0 to the absence of a feature; that is, if a subject did
not select a particular word, we set the rating to 0. Later on, we discuss possible
issues with this formulation; see Section 4.1

As an alternative to the Euclidean measure, we can consider the Manhattan or L1

distance

dij =
∑

p

|xi − xj | . (2)

dij =
√∑

p

|xi − xj |2 (3)

dij =
∑

p

(
xi log

xi

m
+ xj log

xj

m

)
,m =

xi + xj

2
(4)

dij =
∑

p

(xi −m)2

m
,m =

xi + xj

2
(5)

This measure takes into account the subject’s ratings for particular words and
ensures that subjective differences in emotional experience are considered.

2In this case, and with all dissimilarity measures that follow, we suppress the dimensionality p of the
observation vector x. Subscripts thus range over observations, where, depending on the analysis, the
observation may be words, subjects, or pieces.

Jeffrey Divergence

6

tion of multidimensional scaling (using a variety of dissimilarity metrics) along with
K-means clustering of dimensionality-reduced data.

We performed all analyses plotting using R (R Development Core Team, 2005).
Multidimensional scaling and K-means clustering used existing implementations,
while we implemented ourselves the dissimilarity measures and the gap statistic.

2.2.1 Dissimilarity Measures

One of the difficulties in non-ranked psychological data is determining an appropri-
ate metric for similarity, or in our case, dissimilarity. There are a number of different
metrics in existence, two of which we used in our study. However, the best metrics
use some domain-specific knowledge to capture nuances of the problem space that
more greedy measures ignore. Two of the metrics described below were created to in-
corporate reasonable information about our problem space. As we see in the results,
Section 3, the performance of the non-standard metrics is somewhat sub-optimal,
suggesting the need for further exploration of more appropriate measures.

As a first measure of dissimilarity we can look at differences in selections of words.
That is, if a subject gave a rating to a word, we assign it a value of 1; if the word was
not selected, we assign a value of 0. We can then compute the Hamming distance
between observation2 i and j as

dij =
∑

p

|1− δ(xi, xj)| (1)

The Hamming distance gives us a measure that rewards exact similarity between
observations, but penalizes any differences. Given the nature of individual differences
in human subjects, this measure will likely be too strict. As well, it ignores (by
construction) the ratings that subjects gave to the stimuli.

Since subjects not only selected descriptors but assigned implicit weights (via their
ratings) to their selections, we should consider dissimilarity measures that incorpo-
rate these values. In all of the cases that follow, when we compute numeric differences
between observations, we assign 0 to the absence of a feature; that is, if a subject did
not select a particular word, we set the rating to 0. Later on, we discuss possible
issues with this formulation; see Section 4.1

As an alternative to the Euclidean measure, we can consider the Manhattan or L1

distance

dij =
∑

p

|xi − xj | . (2)

dij =
√∑

p

|xi − xj |2 (3)

dij =
∑

p

(
xi log

xi

m
+ xj log

xj

m

)
,m =

xi + xj

2
(4)

dij =
∑

p

(xi −m)2

m
,m =

xi + xj

2
(5)

This measure takes into account the subject’s ratings for particular words and
ensures that subjective differences in emotional experience are considered.

2In this case, and with all dissimilarity measures that follow, we suppress the dimensionality p of the
observation vector x. Subscripts thus range over observations, where, depending on the analysis, the
observation may be words, subjects, or pieces.
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